1 Curve C has equation $y = px^3 - mx$ where p and m are positive integers.

Find the range of values of x, in terms of p and m, for which the gradient of C is negative.

gradient of curve
$$C = \frac{dy}{dx}$$

$$\frac{dy}{dx} : 3px^2 - m$$

when gradient of C is negative,

$$\frac{dy}{dx} < 0$$

$$3\rho x^{2} - m < 0 \quad \boxed{1}$$

$$3\rho x^{2} < m$$

$$x^{2} < \frac{m}{3\rho}$$

$$x = \sqrt{\frac{m}{3\rho}} \quad \boxed{1}$$

$$-\sqrt{\frac{m}{3\rho}} < x < \sqrt{\frac{m}{3\rho}} \quad \boxed{1}$$

$$\sqrt{\frac{m}{3\rho}} < \chi < \sqrt{\frac{m}{3\rho}}$$

(Total for Question 1 is 4 marks)

2 The diagram shows a rectangle.

The area of the rectangle is $A \text{ cm}^2$

Given that A < 3x + 27 find the range of possible values for x.

Area of rectangle = A =
$$(2x-4)(3x+2)$$

A = $6x^2-8x-8$
Given : A < $3x+27$
: $6x^2-8x-8 < 3x+27$ []
: $6x^2-11x-35 < 0$ []
 $x = \frac{11 \pm \sqrt{11^2-4(6)(-35)}}{2(6)}$ []
= $\frac{11 \pm 31}{12}$
: $x = \frac{42}{12} = \frac{7}{1}$ or $x = \frac{-20}{12} = \frac{-5}{3}$ (length of side will be negative)

Since length of sides cannot be ≤0,

:
$$\chi > \chi$$
 hence, $\chi < \chi < \frac{7}{2}$ (1)

Comes from inequalities $\chi = \chi - \chi > 0$ (Total for Question 2 is 5 marks)

3 (b) Solve the inequality $5y^2 - 17y \leqslant 40$

$$5y^{2} - 17y - 40 \le 0$$

 $(5y+8)(y-5) \le 0$
 $y = -\frac{8}{5}$ or $y = 5$ (1)
 $-\frac{8}{5} \le y \le 5$ (1)

$$-\frac{8}{5} \le y \le 5$$

(3)

4 Solve the inequality $6x^2 + 37x \le 35$ Show clear algebraic working.

$$\chi = \frac{5}{6}$$
, $\chi = -7$

$$-7 \leq \chi \leq \frac{5}{6}$$

 $-7 \leq \chi \leq \frac{5}{6}$

(Total for Question 4 is 3 marks)